Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.

Identifieur interne : 000433 ( Main/Exploration ); précédent : 000432; suivant : 000434

Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.

Auteurs : Mina Momayyezi [Canada, États-Unis] ; Athena D. Mckown [Canada] ; Shannon C S. Bell [Canada] ; Robert D. Guy [Canada]

Source :

RBID : pubmed:31816145

Abstract

Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2HCO3- equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO2 -sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.

DOI: 10.1111/tpj.14638
PubMed: 31816145


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.</title>
<author>
<name sortKey="Momayyezi, Mina" sort="Momayyezi, Mina" uniqKey="Momayyezi M" first="Mina" last="Momayyezi">Mina Momayyezi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Viticulture and Enology, University of California, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mckown, Athena D" sort="Mckown, Athena D" uniqKey="Mckown A" first="Athena D" last="Mckown">Athena D. Mckown</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bell, Shannon C S" sort="Bell, Shannon C S" uniqKey="Bell S" first="Shannon C S" last="Bell">Shannon C S. Bell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31816145</idno>
<idno type="pmid">31816145</idno>
<idno type="doi">10.1111/tpj.14638</idno>
<idno type="wicri:Area/Main/Corpus">000570</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000570</idno>
<idno type="wicri:Area/Main/Curation">000570</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000570</idno>
<idno type="wicri:Area/Main/Exploration">000570</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.</title>
<author>
<name sortKey="Momayyezi, Mina" sort="Momayyezi, Mina" uniqKey="Momayyezi M" first="Mina" last="Momayyezi">Mina Momayyezi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Viticulture and Enology, University of California, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mckown, Athena D" sort="Mckown, Athena D" uniqKey="Mckown A" first="Athena D" last="Mckown">Athena D. Mckown</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bell, Shannon C S" sort="Bell, Shannon C S" uniqKey="Bell S" first="Shannon C S" last="Bell">Shannon C S. Bell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO
<sub>2</sub>
diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO
<sub>2</sub>
<mml:math>
<mml:mo></mml:mo>
</mml:math>
<mml:math>
<mml:msubsup>
<mml:mtext>HCO</mml:mtext>
<mml:mn>3</mml:mn>
<mml:mo>-</mml:mo>
</mml:msubsup>
</mml:math>
equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO
<sub>2</sub>
concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO
<sub>2</sub>
diffusion inside mesophyll cells by facilitating CO
<sub>2</sub>
transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO
<sub>2</sub>
-sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO
<sub>2</sub>
diffusivity through the mesophyll and supply of CO
<sub>2</sub>
to photosynthetic reactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31816145</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>831-844</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14638</ELocationID>
<Abstract>
<AbstractText>Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO
<sub>2</sub>
diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO
<sub>2</sub>
<mml:math>
<mml:mo></mml:mo>
</mml:math>
<mml:math>
<mml:msubsup>
<mml:mtext>HCO</mml:mtext>
<mml:mn>3</mml:mn>
<mml:mo>-</mml:mo>
</mml:msubsup>
</mml:math>
equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO
<sub>2</sub>
concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO
<sub>2</sub>
diffusion inside mesophyll cells by facilitating CO
<sub>2</sub>
transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO
<sub>2</sub>
-sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO
<sub>2</sub>
diffusivity through the mesophyll and supply of CO
<sub>2</sub>
to photosynthetic reactions.</AbstractText>
<CopyrightInformation>© 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Momayyezi</LastName>
<ForeName>Mina</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-8039-3681</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McKown</LastName>
<ForeName>Athena D</ForeName>
<Initials>AD</Initials>
<Identifier Source="ORCID">0000-0002-7402-9952</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bell</LastName>
<ForeName>Shannon C S</ForeName>
<Initials>SCS</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guy</LastName>
<ForeName>Robert D</ForeName>
<Initials>RD</Initials>
<Identifier Source="ORCID">0000-0002-2573-8226</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">g m </Keyword>
<Keyword MajorTopicYN="Y">CO2 conductance</Keyword>
<Keyword MajorTopicYN="Y">carbonic anhydrase families</Keyword>
<Keyword MajorTopicYN="Y">chloroplast</Keyword>
<Keyword MajorTopicYN="Y">gene expression</Keyword>
<Keyword MajorTopicYN="Y">metalloenzyme</Keyword>
<Keyword MajorTopicYN="Y">photosynthetic capacity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31816145</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>de Araujo, C., Arefeen, D., Tadesse, Y., Long, B.M., Price, G.D., Rowlett, R.S., Kimber, M.S. and Espie, G.S. (2014) Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120. Photosynth. Res. 121, 135-150.</Citation>
</Reference>
<Reference>
<Citation>Badger, M.R. and Pfanz, H. (1995) Effect of carbonic anhydrase inhibition on photosynthesis by leaf pieces of C3 and C4 plants. Aust. J. Plant Physiol. 22, 45-49.</Citation>
</Reference>
<Reference>
<Citation>Badger, M.R. and Price, G.D. (1994) The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 45, 369-392.</Citation>
</Reference>
<Reference>
<Citation>Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S. and Long, S.P. (2002) Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992-1998.</Citation>
</Reference>
<Reference>
<Citation>Blanco-Rivero, A., Shutova, T., Román, M.J., Villarejo, A. and Martinez, F. (2012) Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS ONE, 7, e49063.</Citation>
</Reference>
<Reference>
<Citation>Borisova, M.M., Kozuleva, M.A., Rudenko, N.N., Naydov, I.A., Klenina, I.B. and Ivanov, B.N. (2012) Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim. Biophys. Acta, 1817, 1314-1321.</Citation>
</Reference>
<Reference>
<Citation>Boyd, R.A., Gandin, A. and Cousins, A.B. (2015) Temperature responses of C4 photosynthesis: biochemical analysis of rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase in Setaria viridis. Plant Physiol. 169, 1850-1861.</Citation>
</Reference>
<Reference>
<Citation>Bradfield, J.R.G. (1947) Plant carbonic anhydrase. Nature, 159, 467-468.</Citation>
</Reference>
<Reference>
<Citation>Burnell, J.N., Gibbs, M.J. and Mason, J.G. (1990) Spinach chloroplastic carbonic anhydrase nucleotide sequence analysis of cDNA. Plant Physiol. 92, 37-40.</Citation>
</Reference>
<Reference>
<Citation>von Caemmerer, S. and Furbank, R.T. (2003) The C4 pathway: an efficient CO2 pump. Photosynth. Res. 77, 191-207.</Citation>
</Reference>
<Reference>
<Citation>Cano, F.J., Sharwood, R.E., Cousins, A.B. and Ghannoum, O. (2019) The role of leaf width and conductances to CO2 in determining water use efficiency in C4 grasses. New Phytol. 223, 1280-1295.</Citation>
</Reference>
<Reference>
<Citation>Coleman, J.E. (1975) Chemical reactions of sulfonamides with carbonic anhydrase. Annu. Rev. Pharmacol. 15, 221-242.</Citation>
</Reference>
<Reference>
<Citation>Coleman, J.R. (2000) Carbonic anhydrase and its role in photosynthesis. In Photosynthesis: Physiology and Metabolism (Leegood, R.C., Sharkey, T.D. and von Caemmerer, S., eds). New York: Kluwer Academic Publishers, pp. 321-351.</Citation>
</Reference>
<Reference>
<Citation>Collins, R.M., Afzal, M., Ward, D.A., Prescott, M.C., Sait, S.M., Rees, H.H. and Tomsett, A.B. (2010) Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS ONE, 5(4), e10103. https://doi.org/10.1371/journal.pone.0010103.</Citation>
</Reference>
<Reference>
<Citation>Cousins, A.B., Badger, M.R. and von Caemmerer, S. (2006) A transgenic approach to understanding the influence of carbonic anhydrase on C18OO discrimination during C4 photosynthesis. Plant Physiol. 142, 662-672.</Citation>
</Reference>
<Reference>
<Citation>DiMario, R.J., Quebedeaux, J.C., Longstreth, D.J., Dassanayake, M., Hartman, M.M. and Moroney, J.V. (2016) The cytoplasmic carbonic anhydrases βCA2 and βCA4 are required for optimal plant growth at low CO2. Plant Physiol. 171, 280-293.</Citation>
</Reference>
<Reference>
<Citation>DiMario, R.J., Clayton, H., Mukherjee, A., Ludwig, M. and Moroney, J.V. (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol. Plant, 10, 30-46.</Citation>
</Reference>
<Reference>
<Citation>DiMario, R.D., Machingura, M.C., Waldrop, G.L. and Moroney, J.V. (2018) The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 268, 11-17.</Citation>
</Reference>
<Reference>
<Citation>Dionisio, M.L., Tsuzuki, M. and Miyachi, S. (1989) Blue light induction of carbonic anhydrase activity in Chlamydomonas reinhardtii. Plant Cell Physiol. 30, 215-219.</Citation>
</Reference>
<Reference>
<Citation>Duanmu, D., Miller, A.R., Horken, K.M., Weeks, D.P. and Spalding, M.H. (2009) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA, 106, 5990-5995.</Citation>
</Reference>
<Reference>
<Citation>Eriksson, A.E., Jones, T.A. and Liljas, A. (1988) Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins, 4, 274-288.</Citation>
</Reference>
<Reference>
<Citation>Evans, J.R., Kaldenhoff, R., Genty, B. and Terashima, I. (2009) Resistances along the CO2 diffusion pathway inside leaves. J. Exp Bot. 60, 2235-2248.</Citation>
</Reference>
<Reference>
<Citation>Fabre, N., Reiter, I.M., Becuwe-Linka, N., Genty, B. and Rumeau, D. (2007) Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ. 30, 617-629.</Citation>
</Reference>
<Reference>
<Citation>Fawcett, T., Browse, J., Volokita, M. and Bartlett, S. (1990) Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol. Chem. 265, 5414-5417.</Citation>
</Reference>
<Reference>
<Citation>Ferreira, F.J., Guo, C. and Coleman, J.R. (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol. 147, 585-594.</Citation>
</Reference>
<Reference>
<Citation>Flexas, J., Barbour, M.M., Brendel, O. et al. (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193-194, 70-84.</Citation>
</Reference>
<Reference>
<Citation>Fromm, S., Braun, H.P. and Peterhansel, C. (2016) Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development. New Phytol. 211, 194-207.</Citation>
</Reference>
<Reference>
<Citation>Frommer, W.B. (2010) CO2mmon sense. Science, 327, 275-276.</Citation>
</Reference>
<Reference>
<Citation>Gee, C.W. and Niyogi, K.N. (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc. Natl. Acad. Sci. USA, 114, 4537-4542.</Citation>
</Reference>
<Reference>
<Citation>Gillon, J.S. and Yakir, D. (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol. 123, 201-213.</Citation>
</Reference>
<Reference>
<Citation>Guliyev, N., Bayramov, S. and Babayev, H. (2008) Effect of water deficit on rubisco and carbonic anhydrase activities in different wheat genotypes. In Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis (Allen, J.F., Gantt, E., Golbeck, J.H. and Osmond, B. eds.). Dordrecht: Springer, pp. 1465-1468.</Citation>
</Reference>
<Reference>
<Citation>Håkansson, K., Carlsson, M., Svensson, L.A. and Liljas, A. (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol. 4, 1192-1204.</Citation>
</Reference>
<Reference>
<Citation>Han, J., Lei, Z., Zhang, Y., Yi, X., Zhang, W. and Zhang, Y. (2019) Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. Physiol. Plant. 166, 873-887.</Citation>
</Reference>
<Reference>
<Citation>Hatch, M.D. and Burnell, J.N. (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol. 93, 825-828.</Citation>
</Reference>
<Reference>
<Citation>Hewett-Emmett, D. and Tashian, R.E. (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenet Evol. 5, 50-77.</Citation>
</Reference>
<Reference>
<Citation>Holder, L.B. and Hayes, S.L. (1965) Diffusion of sulfonamides in aqueous buffers and into red cells. Mol. Pharmacol. 1, 266-279.</Citation>
</Reference>
<Reference>
<Citation>Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M., Xue, S., Ries, A., Godoski, J., Kuhn, J.M. and Schroeder, J.I. (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 112, 87-95.</Citation>
</Reference>
<Reference>
<Citation>Hu, H.H., Rappel, W.J., Occhipinti, R., Ries, A., Bohmer, M., You, L., Xiao, C.L., Engineer, C.B., Boron, W.F. and Schroeder, J.I. (2015) Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal movements. Plant Physiol. 169, 1168-1178.</Citation>
</Reference>
<Reference>
<Citation>Huang, S., Hainzl, T., Grundström, C., Forsman, C., Samuelsson, G. and Sauer-Eriksson, E. (2011) Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS ONE, 6, e28458.</Citation>
</Reference>
<Reference>
<Citation>Igamberdiev, A.U. and Roussel, M.R. (2012) Feedforward non-Michaelis-Menten mechanism for CO2 uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. Biosystems, 107, 158-166.</Citation>
</Reference>
<Reference>
<Citation>Jenkins, C.L.D., Furbank, R.T. and Hatch, M.D. (1989) Mechanism of C4 photosynthesis a model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol. 91, 1372-1381.</Citation>
</Reference>
<Reference>
<Citation>Karlsson, J., Clarke, A.K., Chen, Z.Y., Hugghins, S.Y., Park, Y., Husic, H.D., Moroney, J.V. and Samuelsson, G. (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 17, 1208-1216.</Citation>
</Reference>
<Reference>
<Citation>Kimber, M.S. and Pai, E.F. (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J. 19, 1407-1418.</Citation>
</Reference>
<Reference>
<Citation>Kisker, C., Schindelin, H., Alber, B.E., Ferry, J.G. and Rees, D.C. (1996) A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 15, 2323-2330.</Citation>
</Reference>
<Reference>
<Citation>Kolbe, A.R., Brutnell, T.P., Cousins, A.B. and Studer, A.J. (2018) Carbonic anhydrase mutants in Zea mays have altered stomatal responses to environmental signals. Plant Physiol. 177, 980-989.</Citation>
</Reference>
<Reference>
<Citation>Kravchik, M. and Bernstein, N. (2013) Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genom. 14, 24. https://doi.org/10.1186/1471-2164-14-24.</Citation>
</Reference>
<Reference>
<Citation>Król, A. and Weidner, S. (2017) Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. J. Plant. Phys. 211, 114-126.</Citation>
</Reference>
<Reference>
<Citation>Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549.</Citation>
</Reference>
<Reference>
<Citation>Liljas, A., Kannan, K.K., Bergstén, P.C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Järup, L., Lövgren, S. and Petef, M. (1972) Crystal-structure of human carbonic anhydrase C. Nat. New Biol. 235, 131-137.</Citation>
</Reference>
<Reference>
<Citation>Lindskog, S. and Coleman, J.E. (1973) The catalytic mechanism of carbonic anhydrase. Proc. Natl. Acad. Sci. USA, 70, 2505-2508.</Citation>
</Reference>
<Reference>
<Citation>Ludwig, M. (2012) Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ. 35, 22-37.</Citation>
</Reference>
<Reference>
<Citation>Majeau, N. and Coleman, J.R. (1994) Correlation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol. 104, 1393-1399.</Citation>
</Reference>
<Reference>
<Citation>Majeau, N. and Coleman, J.R. (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5 -bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol. 112, 569-574.</Citation>
</Reference>
<Reference>
<Citation>Majeau, N., Arnoldo, M. and Coleman, J.R. (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Mol. Biol. 25, 377-385.</Citation>
</Reference>
<Reference>
<Citation>Makino, A., Sakashita, H., Hidema, J., Mae, T., Ojima, K. and Osmond, B. (1992) Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol. 100, 1737-1743.</Citation>
</Reference>
<Reference>
<Citation>Marcussen, T., Simen, R.S., Heier, L. et al. (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092.</Citation>
</Reference>
<Reference>
<Citation>Marraccini, P., Vinecky, F., Alves, G.S. et al. (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J. Exp. Bot. 63, 4191-4212.</Citation>
</Reference>
<Reference>
<Citation>McKown, A.D., Guy, R.D., Klápště, J., Geraldes, A., Friedmann, M., Cronk, Q.C.B., El-Kassaby, Y.A., Mansfield, S.D. and Douglas, C.J. (2014) Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 201, 1263-1276.</Citation>
</Reference>
<Reference>
<Citation>McKown, A.D., Klápště, J., Guy, R.D., Corea, O.R.A., Fritsche, S., Ehlting, J., El-Kassaby, Y.A. and Mansfield, S.D. (2019) A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade-off in poplar. New Phytol. 223, 1888-1903.</Citation>
</Reference>
<Reference>
<Citation>Meldrum, N.U. and Roughton, J.W. (1933) Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113-142.</Citation>
</Reference>
<Reference>
<Citation>Milla-Moreno, E.A., McKown, A.D., Guy, R.D. and Soolanayakanahally, R.Y. (2016) Leaf mass area predicts palisade structural properties linked to mesophyll conductance in balsam poplar (Populus balsamifera L.). Botany, 94, 225-239.</Citation>
</Reference>
<Reference>
<Citation>Millar, A.H., Whelan, J., Soole, K.L. and Day, D.A. (2011) Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62, 79-104.</Citation>
</Reference>
<Reference>
<Citation>Momayyezi, M. and Guy, R.D. (2017a) Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant Cell Environ. 40, 138-149.</Citation>
</Reference>
<Reference>
<Citation>Momayyezi, M. and Guy, R.D. (2017b) Blue light differentially represses mesophyll conductance in high vs. low latitude genotypes of Populus trichocarpa Torr. & Gray. J. Plant Physiol. 213, 122-128.</Citation>
</Reference>
<Reference>
<Citation>Momayyezi, M. and Guy, R.D. (2018) Concomitant effects of mercuric chloride on mesophyll conductance and carbonic anhydrase activity in Populus trichocarpa Torr. & Gray. Trees, 32, 301-309.</Citation>
</Reference>
<Reference>
<Citation>Moroney, J.V., Bartlett, S.G. and Samuelsson, G. (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ. 24, 141-153.</Citation>
</Reference>
<Reference>
<Citation>Neish, A.C. (1939) Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem J. 33, 300-308.</Citation>
</Reference>
<Reference>
<Citation>Ogée, J., Wingate, L. and Genty, B. (2018) Estimating mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity. Plant Physiol. 178, 728-752.</Citation>
</Reference>
<Reference>
<Citation>Osborn, H.L., Alonso-Cantabrana, H., Sharwood, R.E., Covshoff, S., Evans, J.R., Furbank, R.T. and von Caemmerer, S. (2017) Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis. J. Exp. Bot. 68, 299-310.</Citation>
</Reference>
<Reference>
<Citation>Pathare, V.S., Koteyeva, N. and Cousins, A.B. (2020) Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses. New Phytol. 225, 169-182.</Citation>
</Reference>
<Reference>
<Citation>Peña, K.L., Castel, S.E., de Araujo, C., Espie, G.S. and Kimber, M.S. (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc. Natl. Acad. Sci. USA, 107, 2455-2460.</Citation>
</Reference>
<Reference>
<Citation>Perez-Martin, A., Michelazzo, C., Torres-Ruiz, J.M., Flexas, J., Fernández, J.E., Sebastian, L. and Diaz-Espejo, A. (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J. Exp. Bot. 65, 3143-3156.</Citation>
</Reference>
<Reference>
<Citation>Porter, M.A. and Grodzinski, B. (1984) Acclimation to high CO₂ in bean: carbonic anhydrase and ribulose bisphosphate carboxylase. Plant Physiol. 74, 413-416.</Citation>
</Reference>
<Reference>
<Citation>Price, G.D., Coleman, J.R. and Badger, M.R. (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol. 100, 784-793.</Citation>
</Reference>
<Reference>
<Citation>Price, G.D., von Caemmerer, S., Evans, J.R., Yu, J.W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A. and Badger, M.R. (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 193, 331-340.</Citation>
</Reference>
<Reference>
<Citation>Protoschill-Krebs, G., Wilhelm, C. and Kesselmeier, J. (1996) Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA). Atmos. Environ. 30, 3151-3156.</Citation>
</Reference>
<Reference>
<Citation>Raven, J.A. (1972a) Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathways in illuminated green cells. New Phytol. 71, 227-247.</Citation>
</Reference>
<Reference>
<Citation>Raven, J.A. (1972b) Endogenous inorganic carbon sources in plant photosynthesis. II. Comparison of total CO2 production in the light with measured CO2 evolution in the light. New Phytol. 71, 995-1014.</Citation>
</Reference>
<Reference>
<Citation>Raven, J.A. (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ. 24, 261-265.</Citation>
</Reference>
<Reference>
<Citation>Raven, J.A. and Beardall, J. (2016) The ins and outs of CO2. J. Exp. Bot. 67, 1-13.</Citation>
</Reference>
<Reference>
<Citation>Roeske, C.A. and Ogren, W.L. (1990) Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucleic Acids Res. 18, 3413.</Citation>
</Reference>
<Reference>
<Citation>Rowlett, R.S. (2010) Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim. Biophys. Acta, 1804, 362-373.</Citation>
</Reference>
<Reference>
<Citation>Rudenko, N.N., Ignatova, L.K., Fedorchuk, T.P. and Ivanov, B.N. (2015) Carbonic anhydrases in photosynthetic cells of higher plants. Biochemistry (Moscow), 80, 674-687.</Citation>
</Reference>
<Reference>
<Citation>Rumeau, D., Cuin, S., Fina, L., Gault, N., Nicole, M. and Peltier, G. (1996) Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves. Planta, 199, 79-88.</Citation>
</Reference>
<Reference>
<Citation>Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J. Exp. Bot. 53, 609-620.</Citation>
</Reference>
<Reference>
<Citation>Sasaki, H., Hirose, T., Watanabe, Y. and Ohsugi, R. (1998) Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol. 118, 929-934.</Citation>
</Reference>
<Reference>
<Citation>Slaymaker, D.H., Navarre, D.A., Clark, D., del Pozo, O., Martin, G.B. and Klessig, D.F. (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. USA, 99, 11640-11645.</Citation>
</Reference>
<Reference>
<Citation>Stemler, A. and Jursinic, P. (1983) The effect of carbonic anhydrase inhibitors formate, bicarbonate, acetazolamide, and imidazole on photosystem II in maize chloroplasts. Arch. Biochem. Biophys. 221, 227-237.</Citation>
</Reference>
<Reference>
<Citation>Studer, A.J., Gandin, A., Kolbe, A.R., Wang, L., Cousins, A.B. and Brutnell, T.P. (2014) A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol. 165, 608-617.</Citation>
</Reference>
<Reference>
<Citation>Supuran, C.T. (2016) Structure and function of carbonic anhydrases. Biochem. J. 473, 2023-2032.</Citation>
</Reference>
<Reference>
<Citation>Tcherkez, G. (2013) Is the recovery of (photo)respiratory CO2 and intermediates minimal? New Phytol. 198, 334-338.</Citation>
</Reference>
<Reference>
<Citation>Terashima, I. and Ono, K. (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol. 43, 70-78.</Citation>
</Reference>
<Reference>
<Citation>Théroux-Rancourt, G. and Gilbert, M.E. (2017) The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant Cell Environ. 40, 726-740.</Citation>
</Reference>
<Reference>
<Citation>Tholen, D. and Zhu, X.G. (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol. 156, 90-105.</Citation>
</Reference>
<Reference>
<Citation>Tiwari, A., Kumar, P., Singh, S. and Ansari, S.A. (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica, 43, 1-11.</Citation>
</Reference>
<Reference>
<Citation>Tripp, B.C., Smith, K. and Ferry, J.G. (2001) Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem. 276, 48615-48618.</Citation>
</Reference>
<Reference>
<Citation>Villarejo, A., Burén, S., Larsson, S. et al. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat. Cell Biol. 7, 1224-1231.</Citation>
</Reference>
<Reference>
<Citation>Wang, M., Zhang, Q., Liu, F.C., Xie, W.F., Wang, G.D., Wang, J., Gao, Q.H. and Duan, K. (2014) Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and Promoter:GUS fusions. Biochimie, 97, 219-227.</Citation>
</Reference>
<Reference>
<Citation>Wang, C., Hu, H., Qin, X., Zeise, B., Xu, D., Rappel, W.-J., Boron, W.F. and Schroeder, J.I. (2016a) Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permebale PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor. Plant Cell, 28, 568-582.</Citation>
</Reference>
<Reference>
<Citation>Wang, L., Jin, X., Li, Q., Wang, X., Li, Z. and Wu, X. (2016b) Comparative proteomics reveals that phosphorylation of β carbonic anhydrase 1 might be important for adaptation to drought stress in Brassica napus. Sci. Rep. 6, 39024.</Citation>
</Reference>
<Reference>
<Citation>Williams, T.G., Flanagan, L.B. and Coleman, J.R. (1996) Photosynthetic gas exchange and discrimination against 13CO2 and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol. 112, 319-326.</Citation>
</Reference>
<Reference>
<Citation>Yang, B., Fekuda, N., van Hoek, A., Matthay, M.A., Ma, T. and Verkman, A.S. (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J. Biol. Chem. 275, 2686-2692.</Citation>
</Reference>
<Reference>
<Citation>Zabaleta, E., Martin, M.V. and Braun, H.P. (2012) A basal carbon concentrating mechanism in plants? Plant Sci. 187, 97-104.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Momayyezi, Mina" sort="Momayyezi, Mina" uniqKey="Momayyezi M" first="Mina" last="Momayyezi">Mina Momayyezi</name>
</region>
<name sortKey="Bell, Shannon C S" sort="Bell, Shannon C S" uniqKey="Bell S" first="Shannon C S" last="Bell">Shannon C S. Bell</name>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
<name sortKey="Mckown, Athena D" sort="Mckown, Athena D" uniqKey="Mckown A" first="Athena D" last="Mckown">Athena D. Mckown</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Momayyezi, Mina" sort="Momayyezi, Mina" uniqKey="Momayyezi M" first="Mina" last="Momayyezi">Mina Momayyezi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000433 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000433 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31816145
   |texte=   Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31816145" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020